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Abbact. Self-consistel Stemheimer antishielding constanan0 for chemical elements with nuclear 
charge in the range 2-94 are obtained within the framework of the local densily approximation. 
The dependence of the Slemheimer faclon on the ion charge s h e s  is discussed. These 
results can be employed for a prediction of the quadrupole splitting paramele~~ on the basis 
of pseudopotential elecmn density calculations. 

1. Introduction 

The interaction between the nuclear quadrupole momentum Q and electric field gradient 
(EFG) in a crystal shows itself in nuclear gamma, magnetic and quadrupole resonance 
(NGR, NMR and NQR). Observation of the nuclear quadrupole interaction (NQI) is one of 
the most precise experimental methods for chemical bonding investigations. A theoretical 
description of the splitting, which is connected with the NQI, requires the determination of 
the values of Q and EFG. 

The value of Q, in principle, can be obtained from experiments with free nuclei. For 
a description of the behaviour of the electric field E ( T )  in compounds, it is necessary to 
have information about the charge distribution p ( r ) .  The electron density can be obtained 
only from ab initio self-consistent band structure calculations. They have already become 
commonly used in the modem theory of solids [l]. However, specilic features of NQI 
make special demands on such computations, and this situation has brought about the 
comparatively small number of theoretical applications to EFG computations in crystals. 
These demands arise from the following reasons. The origin of nonzero EFG at the nuclei 
of ions with closed shells is the nonspherical field of the valence electrons and other ions. 
This field may be aeated as an external field. The EFG, however, induced by core states 
of a given ion, may be many times greater than the external one. Sternheimer was the first 
who paid attention to this effect [2]. Thus, in the quest for the EFG acting on nuclei, the 
reaction of the core states, which do not participate in the formation of chemical bonds, 
must be considered. 

The overwhelming majority of modern band structure calculations are based on the 
following approaches. 

In the first approach, core states are described within the framework of muffin-tin 
methods. Thanks to the central symmetry and the special properties of the muffin-tin 
potential, the problem of self-consistency can be solved easily enough, with an accuracy 
that in many cases is sufficient for the description of electron specbum features. Appropriate 
methods are especially effective in their linear versions [3]. NQI methods were developed 
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in [MI. Such methods, in principle, are free of the necessity of taking into account the 
corrections that are connected with the Sternheimer effect, because the core polarization, 
induced by the crystal field, can be accounted for automatically. Nevertheless, owing to the 
great distinction between the locations of core and valence electrons, powerful computers 
are required for a realization of these methodst. 

In another approach, based on the pseudopotential theory, a self-consistent solution 
is feasible only for a subsystem of valence electrons in the field of ion cores. This 
approach is cruder than the previous one, but at the same time it has some advantages. 
The main advantage is the fact that the problem of an electron spectrum description 
has significantly fewer dimensions, and therefore can be solved with less computational 
expenditure. Moreover, results obtained in this way are easier to interpret; the interpretation 
can be done in terms of the charge states of ions and the peculiarities of chemical bonding 
between these ions. 

Since the experimental methods of NQI investigations are widely practiced, the problem 
of constructing an effective approximate method of EFG computations in crystals becomes 
important. The application of the pseudopotential theory to these methods seems to be 
preferable. 

In this case the reaction of core shells to the electric field in matter must be investigated 
separately. It is usually described by means of the Sternheimer constants y and R [7]: 
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VF = (1 - y)Vp + (1 - R ) V F f i r .  (1) 

Here VF is the EFG created by external valence electrons and ion cores (lattice 
component), VFf" describes the polarization of unfilled shells of the considered ion, V p  
is the EFG at the nucleus. 

Thexe are many papers devoted to the problem of y computations. The starting points 
and the results of all of them are different. Values for Cu+ are -15 [SI, -17 191 and 
-13.77 [IO]. In the case of Cu" the following values were given: -25 [9] and -7.59 [I l l .  

The majority of theoretical computations are fulfilled within the framework of Hattree- 
Fock theory. Corrections to wavefunctions have been given either with a straight solution 
of the inhomogeneous Schrodinger equation [ E ,  131 or by use of variational perturbation 
theory [14,15]. Results, obtained in this way, strongly depend on the type of unperturbed 
wavefunctions used. Thus, a value y = - 102.5 was found for Cs on the basis of Hartree- 
Fock wavefunctions and y = -143.5 on the basis of Hattree wavefunctions for the same 
ion 1161. Moreover, results obtained in the framework of variational perturbation theory 
depend on the flexibility of variation functions [15]. 

The consideration (coupled Hartree-Fock) or otherwise (uncoupled Hatree-Fock) of 
self-consistency in the electron-electron interaction plays a significant role in obtaining 
corrections to wavefunctions. In some papers [17,18] electron wavefunctions of ions in 
crystals were obtained within the framework of the Watson sphere approximation [19], 
because wavefunctions of the external shells may be quite different for free ions and ions 
in crystals. 

Recent papers 117-241 devoted to Stemheimer factor calculations were canied out within 
the framework of many-body perturbation theory in the spirit of the link-cluster many-body 
perturbation theory [201. 

t The Stemheimer effect demands a high-precision description of small deformations of the close-to-nucleus states. 
This problem can be relatively easily solved with the penurbation theory method for isolated ions, but meets geat 
difficulties in zone lheory methods, which use the basis of Blcch functions. 
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Thus some works devoted to y calculations were performed in accordance with Hartree- 
Fock theory, another calculation was made in the spirit of the Herman-Skillman method [25], 
and others took into consideration many-electron corrections. The dif€erence in results is 
caused both by computational details and the starting assumptions. 

At the same time, the majority of non-empirical crystal calculations are carried out in the 
framework of electron density functional theory (DFT) in the local density approximation 
(LDA). Sternheimer constants, obtained in the same approximation, must be used for 
consmcting a complete theory. Moreover, Sternheher constants, as a rule, are calculated 
only for charge states that correspond to chemical valence of ions. The open shells, whose 
reconstsuction in the external field causes the appearance of the second term in (1) were also 
included in the ion core. However, according to modern pseudopotential theory, electron 
states of unclosed shells must be treated as the valence ones [26]. It means that in (I)  only 
the first term remains and therefore y must be recalculated. 

In the present work we report the results of calculations of Stemheimer constants, 
caused by the polarization of the closed shells. These calculations were carried out within 
the framework of LDF theory both with consideration of the electron-electron interaction 
and .without it. In addition, we discuss the dependence of these constants upon the charge 
states of ions. 

2. Model 

There are two sources of the polarization of the closed electron shells. The first is the 
quadrupole nuclear momentum, which creates an appropriate electrical field. The second is 
the elecnic field of the environment. A comparison shows that the first source usually can 
be neglected. 

The conhibution of the non-spherical component of the nuclear field to the Hamiltonian 
will be - Q / r 3  at a distance r ,  and the contribution of the field due to the environment 
will be - r Z / A 3 ,  where A is a size of the order of the nuclear distance. For example, 
for 57Fe: Q - 0.14 b - 0.6 x lO-'au [U]? the characteristic value of r for the M layer, 
whose contribution to y is the most important, is - 0.6, and A - 2.5. The ratio of the first 
contribution to the second is - IO-'. 

Let us observe the problem of a many-electron atom (ion), situated in an external field, 
in the framework of LDA 

Once we are interested in the linear response, A may be considered as infinitesimal. 
The problem thus comes down to a search for a self-consistent solution of a system of 
KohnSham equations [28]: 

(-;A + Vc(r)+V&) + Kxt(r))#ndr) = W , d r )  (3) 
where 

t We use atomic unitx c = 1 = m, = 1. 



4858 A A Gusev et a1 

Here Z is the nuclear charge; only occupied states must be summed. There are many 
approximate expressions for E,,[p(r)]; they all provide very similar results. Following [26] 
we use the expression by Ceperley-Alder 1291, taking into account relativistic comections 
as proposed by MacDonald and Vosko 1301. 

We solve equation (3) in first-order perturbation theory. For this, we express $ G m  = 
$2; + @:;; + . . ., where $:: is the correction of the j th  order. To lirst order we have 

(-fa + vo(r) - Ejf)$2(r) = (E;, - cx,(r) - sv(r))&(r) (7) 

where 

and EAf is the average of the sum Va,(r) + SV(r )  over unperturbed functions $2;. 
Expanding wavefunctions into spherical harmonics we get 

We will now omit the obvious index n of the principal quantum number in the 
designations of wavefunctions. Separating the radial and angular parts of 6 p ( r )  we get 

Here NI is the number of electrons in the lth shell 

c,,, = 2G(Yl,m,lY201fim)Z 
mm' 

the doubled sum of the squares of Gaunt coefficients [31]. Using occupation numbers we 
can treat those shells with an insufficient quantity of electrons as closed ones in LDF. The 
coefficients (1 1) differ from zero only for even values of 1 + I '  and for 11 + 1'1 4 1' 4 I + 2. 

Using (IO) and (ll), one can show that the change of potential (8) has the form 

= -Ar2veff0)Ym(@, a) (12) 

where 

v d r )  = v ( r )  + vxcW (13) 

and Coulomb y ( r )  and exchangecorrelation ylc ( r )  contributions in yef f (r )  can be 
expressed as 
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Substituting (9) in (7) and considering the definitions (13)-(15), we see that the radial 
functions R,!,, satisfy the equation 

(16) 

The symbol (...)nl denotes an average over atomic orbitals Rp(r), which are the 
solutions of (16) with zero right-hand side. Stemheimer constants y = y(0).  In the spin 
variant of the local density theory we draw a distinction between p t ( r )  and &(T),  which 
causes the appearance of an additional spin index and the necessity of solving (16) with 
different V,, for orbitals with spin U .  

3. Computational details 

In order to solve (16) we have used the finitedifference approximation of derivatives over 
the set r: of radius r values. This set must converge to zero for a correct reproduction of 
the deep core states. We have chosen 

r; = CIexp(Ai) - 11 i = 1,. . . , N 

where the parameters A and C are determined by the rl bound value r ,  rN+1 (whose 
solution must be zero) and the number of nodes N .  It is clear that one must choose 
rl << l j Z ,  r ,  much greater than an atomic radius, and in such circumstances the results do 
not depend on the value of these parameters. Then (16) reduces to a system of algebraic 
equations of the following type: 

( A - & ) R = B  (171 

for the values of the radial function R in the nodes of a mesh with the three-diagonal 
matrix A. Because the mesh is not equidistant, the matrix A becomes non-symmetrical. 
Nevertheless, one can show that there exists a transformation L, such that C ’ A L  is a 
three-diagonal symmetrical matrix. There are many highly-effective numerical methods for 
solving problems with such matrices [32]. Radial orbitals obtained in this way prove to 
be normalized to unity in the sense of a trapezium quadrature formula. Therefore we use 
thk formula in all the calculations of integrals. As our results show, a relative precision of 
order lo-’ for y can be reached in the case N - 50 for every electron layer. 

Since the orbitals RP and R/l, are included both in the left-hand side of equations via 
Vo(r) and in the right-hand side via ye,-,-, the solution should be found self-consistently in 
the iteration process. It can be canied out in two stages. In the first stage we solve the 
standard problem of a free ion, and applying the found orbitals RP we solve the equation 
for R/,, considering yay,- = 0 in the right-hand side of (16). We then calculate Stemheimer 
constants by (14) without considering the self-consistent electron-electron interaction. In 
order to take into account the effect of the electron-electron interaction on y ( r )  and y(O), 
we must carry out the second stage of iteration: self-consistent solving of (16) for R:l, in 
which yeff is determined via (13)-(15). A non-self-consistent value of y(r) can be treated 
as y ( r ) ,  which was obtained in the first stage of such iterations. It is natural to use the 
results of every iteration as the starting value for the next iteration. For the optimization 
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of iteration convergence, it is convenient to use a linear combination of initial data and the 
result of the previous step with approximately equal weights. 

The following situation must also be observed: 1’ = I in (16). In this case the matrix 
(A-&) becomes degenerate. As soon as the right-hand side is orthogonal to the appropriate 
eigenvector, a solution exists. It can be found with sufficient accuracy as the average of 
solutions (17) with E replaced by E f A, where A - 10-7-10-9 (square root from the 
precision of the performance of real numbers in 8-10 bytes). 
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4. Results and discussion 

The results of calculations of Sternheimer factors for elements with nuclear charge up to 
Z = 94 are given in table 1. The upper values are calculated in a non-self-consistent 
manner; the lower ones are self-consistent. We consider the polarization of electron shells 
from the state Isz to the state pointed out in the table. Taking into account these core shells 
corresponds to the natural chemical valence of such elements as &i+, Be2+, Mg2+, . . .). 
To define the cores of other elements we use the criteria which are used in constructing 
the norm-conserving pseudopotentials [26]: we consider as a core all electron shells except 
extemal (valence) and unclosed d- and f-shells. In the first case computations can be 
carried out for the above-mentioned ‘chemical‘ charge states of isolated ions. In the other 
cases such computations are meaningless because the appropriate degrees of ionization 
significantly exceed those ones that can be realized in compounds. Core states become 
closer to the nucleus than in the crystal case. Therefore, we have always calculated electron 
states of a neutral atom self-consistently, but have considered only core-shell polarization in 
our y ( r )  and yef,(r) computations. Thus the shells that do not contribute to y only model 
the spherically averaged field that they produce in the vicinity Of the core in compound. 
Later we shall discuss the problem of the influence of the ion charge on the obtained 
Stemheimer factors, but here we notice that the functions y ( r )  and yef,(r) display a strong 
space dispersion, which reflects the shell struchm of ion. 

The Sternheimer factors gathered in table 1, calculated without taking into account the 
changes of the potential of the electronelectron interaction, which are due to the electron 
cloud polarization SV(r ) ,  are similar to the values given in [15,22], despite the difference 
between the approximations used in these works and the LDA. However, we cannot say the 
same about the self-consistent factors (i.e. factors obtained without neglecting SV(r)) .  

Some papers report that a weak influence of the electronelectron interaction on y values 
is about 1% for Rb and Cs [21] and self-consistency changes the factors by not more than 
15-20% in aU cases 1171. Our results do not confirm these inferences. In the case of Rb 
and Cs, self-consistency, as shown in table 1, changes y values by 13-15%. The influence 
of self-consistency on He and the elements of the second row of the periodic table is not 
significant (- 1-2%). This influence increases with row number and reaches 20-25% for 
closed d-shells. As one can see in table 1, the influence of the electronelectron interaction 
is a maximum for TI and Hg (i.e. when the external core shell is 5d). reaching 35% and 
41% accordingly. 

Table 2 illustrates the dependence of Sternheimer factors of several ions on their charge 
states. We consider the polarization of the same shells that are specified in table 1. The 
values obtained from a self-consistent process are shown in brackets. These results show 
that the change in factors due to the change of ion charge is insignificant and, as a rule, can 
be neglected. In computations that are carried out for higher ion charges and which aspire 
to a quantitative description of experiments, this dependence, of course, must be taken into 
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Table 1. Sternheimer constants of chemical elements. 
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State Element 
Is2 He Li BO B C N 0 F Ne 

0.439 0.266 0,192 0.149 0,122 0.104 0.0899 0.0794 0.0711 
0.428 0.262 0.189 0.148 0.121 0.103 0.0892 0.0788 0.0706 

2p6 Ne Na Mg AI Si P S c1 Ar 
-10.7 -5.91 -3.95 -2.88 -2.25 -1.83 -1.54 -1.33 -1.16 
-10.1 -5.59 -3.76 -2.76 -2.17 -1.78 -1.50 -1.29 -1.13 

3$ Ar K Ca sc Ti v 0 Mn Fe 
-33.3 -22.1 -16.4 -14.3 -12.9 -11.8 -11.6 -10.3 -9.67 
-32.1 -21.0 -15.5 -13.6 -12.2 -11.2 -11.0 -9.77 -9.20 
CO Ni cu Zn 
-9.15 -8.69 -8.66 -7.92 
-8.72 -8.30 -8.28 -7.58 

3d'O Zn Ga Ge AS Se Br Kr 
-16.7 -12.3 -9.99 -8.52 -7.47 -6.66 -6.02 
-9.88 -9.03 -7.97 -7.09 -6.39 -5.81 -5.32 

4p6 Kr Rb SI Y zr Nb MO Tc Ru 
-85.4 -59.9 -46.0 -39.4 -35.0 -33.1 -30.4 -27.0 -26.3 
-73.8 -52.3 -40.4 -34.8 -31.1 -29.5 -27.2 -24.3 -23.7 
Rh Pd As cd 
-24.7 -24.1 -22.2 -20.4 
-22.4 -21.9 -20.2 -18.6 

4d'O Cd In Sn Sb Te I Xe 
-35.0 -28.9 -25.0 -22.1 -19.9 -18.1 -16.7 
-24.4 -21.9 -19.9 -18.1 -16.7 -15.4 -14.3 

5p6 Xe CS Ba 
-162. -120. -95.0 
-138. -103. -81.2 

4d'O La ce PI Nd Pm Sm Eu Gd Tb 
-13.3 -12.8 -12.7 -12.3 -11.9 -11.6 -11.3 -10.8 -10.7 
-11.7 -11.3 -11.2 -10.9 -10.6 -10.3 -10.1 -9.70 -9.63 

DY no Er Tm Yb LU 
-10.4 -10.2 -9.98 -9.77 -9.57 -9.26 
-9.42 -9.22 -9.04 -8.86 -8.69 -8.43 

5p6 Hf Ta W Re OS Ir pt A" Hg 
-68.3 -62.6 -58.0 -54.1 -50.9 -48.1 -47.0 -44.8 -415 
-60.4 -5.5.3 -52.0 -48.9 -45.9 -43.4 -42.5 -40.5 -37.6 

5dto HE TI Pb Bi Po At Rn 

6p6 Rn Fr Ra AC Th Pa U NP Pu 

-69.9 -59.0 -51.9 -46.6 -42.4 -39.0 -36.2 
-40.9 -38.9 -36.6 -34.3 -32.2 -30.4 -28.7 

-294. -222. -179. -157. -142, -148. -145. -142. -151. 
-249. -188. -151. -133. -119. -125. -123. -120. -129. 

account. In the case of Gd, however, thii dependence is absent. For Gd all 18 electrons, 
which belong to 4f, 5s, 5p, 5d and 6s shells must be considered as the non-core ones, and 
a relatively small change in their value does not influence the strongly coupled core states. 
Naturally, in similar cases the dependence of antishielding factors on the ion charge states 
is not essential. 
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Table 2. The dependence of the Sternheher fwtors of some ions on their charge states 

Z Y  Gd Fe CU 

0 -34.8 (-39.4) -9.70 (-10.8) -9.20 (-9.67) -8.28 (-8.66) 
tl -34.0 (-38.6) -9.70 (-10.8) -9.16 (-9.62) -8.30 (-8.69) 
t2 -32.5 (-37.0) -9.70 (-10.8) -9.04 (-9.50) -8.21 (-7.84) 
t3 -28.9 (-33.0) -9.70 (-10.8) -8.24 (-8.56) - 

Table 3. The convibution of the electronic shells of Fe ions lo Stemheimer consmLs. 

Shell Fe Fe' Fe2' F$+ 

IS 0.0979 011949 0.0939 0.0878 
2s 0.0594 0.0591 0.0589 0.0567 
3s 0.144 0.144 0.144 0,140 
2p -0.337 -0.338 -0.338 -0.332 
3p -9.16 -9.12 -9.00 -8.20 
Total -9.20 -9.16 -9.04 -824 

As mentioned above, the main contribution to Stemheimer factors comes from the 
outermost core shells. In table 3 the contributions of several shells to the values of self- 
consistent antishielding constants of Fe ions are displayed. 

5. Conclusions 

( I )  Sternheimer factors of core shells have been found in the framework of LDF theory. 
As in modem pseudopotential theory, only entirely closed shells have been classified as 
core shells. Therefore, the accepted values can be used in computations of the EFG at 
nuclei, which are based on non-empirical calculations of only the valence electron density 
distribution. 

(2) The influence of the electron-electron interaction upon shielding constants has been 
investigated. It changes from a few per cent (for the ions of the first and second rows of 
the periodic table) to 3MO% (in the case of d external shells). 

(3) Information about the dependence of Stemheimer factors upon the charge states of 
ions has been reported. 
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